
Architecture: Scalable e-commerce
workloads using microservices

This is the sample showcase of how we architect scalable solution for your
business using cloud native stack

Retail commerce requirements and microservices
Retail commerce workloads require a number of cloud-native features in order to
meet demand from an ever-growing number of consumer devices and platforms:

Typically, these deployments must be multi-region to serve a global
customer base.
They must support some degree of autoscaling or scheduled scaling, scaling
up to meet peak demand during busy seasons, and scaling down to reduce
infrastructure costs when demand is lower.
Retail commerce deployments must be able to deliver features and
functionality to customers quickly and efficiently to meet changing market
demands.
Retail commerce deployments should also take advantage of managed
infrastructure to allow developers to focus on customer-facing functionality.
Finally, these deployments must be centrally secured and managed.

Microservices are a good fit for all of these requirements. Individual microservices
can be deployed and scaled independently of one another, which lets you rapidly
deliver new features and functionality. Services can be small, modular, loosely
coupled, and organized around your specific business capabilities and needs.
Microservices can leverage service discovery and use simple mechanisms (such as
HTTP) for easy connectivity from a wide variety of devices.

Backend architecture
For retail commerce workloads, you organize microservices into the discrete
functions that are needed to build the customer-facing user experience. For
example, you might have a product metadata service that retrieves (and
optionally, caches) metadata for a particular product. Or you might have a product
pricing service that retrieves the price of a product for a given customer.

Your microservices are exposed to clients via REST APIs, and your client
applications communicate with the REST APIs through an API gateway.

The following diagram shows an example commerce-oriented backend
microservices architecture.

af://n0
af://n3
af://n17

Frontend architecture
The customer-facing user experience in your retail commerce workloads typically
includes responsive web applications (often delivered as Progressive Web Apps)
and optionally as native mobile applications. In combination with the backend
architecture shown previously, you build your applications by assembling multiple
frontend components that correspond to and communicate with backend APIs and
services.

The following diagram shows an example commerce-oriented web application
frontend.

af://n23
https://web.dev/progressive-web-apps/

Data storage
Retail commerce workloads must persist multiple categories of data. Categories
include:

Product catalog—product attributes such as name, description, colour, and
size.
Shopper profiles—customer data such as name, age, preferences, and
billing and shipping addresses.
Shopper transactions—information about customer purchases such as
items purchased and date of purchase.
Clickstream data—information that traces a shopper's path through the
website.
Product images and videos—media related to a particular product,
including first-party content and customer-supplied content.
Ratings and reviews—opinions and feedback from customers for a product.
Product inventory—data about whether an item is in stock and expected
arrival of new stock.

Each category of data can be mapped to a Google Cloud storage mechanism, as
shown in the following table.

af://n27

Product catalog

In product catalogs, products have a set of attributes—name, description, and so
on. But as your product catalog diversity grows, the number of distinct attributes
grows as well. Each new category of products has its own set of attributes that can
be used to search or filter on, such as item sizes and colors, or item type and
model.

For product catalogs, the most appropriate storage option is therefore a NoSQL
document-oriented database, which has a flexible schema and can store per-
category or per-object attributes. Datastore is a fully-managed NoSQL
document-oriented database and provides support for this use case. In Datastore,
you store objects as entities, and each entity supports nested key-value pairs,
similar to the structure of JSON. Datastore is available within multiple Google
Cloud regions and runs as an always-on service.

Product media

Every product in a product catalog can have first-party images or videos, and
might also have customer-supplied images or videos. You can store these sorts of
assets in a scalable object storage system, capable of serving those assets directly
to web applications or mobile applications. Cloud Storage is a managed object
storage service that can serve data across multiple regions. Cloud Storage offers
different tiers of data access and availability depending on your needs. For high
performance, Cloud CDN leverages Google's globally distributed edge locations to
accelerate delivery for content served from Cloud Storage. This ensures that your
static assets are located as close as possible to end users in order to minimize
download latency.

Shopper profiles

Shopper profiles have a consistent set of attributes and are often
multidimensional. For example, some of your customers might have multiple
shipping addresses or multiple payment methods, each with their own billing
address.

You can store shopper profiles in relational databases using multiple tables.
However, you might also use NoSQL document-oriented databases to store
customer profiles. This lets your shopper profiles be stored as single, rich objects
that hold all of the data for a given customer. Datastore is a fully-managed NoSQL
document-oriented database that can provide support for this use case.

af://n46
https://cloud.google.com/datastore
af://n49
https://cloud.google.com/storage
https://cloud.google.com/cdn
af://n51

Ratings and reviews

Product ratings and reviews left by customers consist of relatively simple data
sets, and you can persist this information using different storage mechanisms. It's
typical to use relational schemas containing fields such as product ID, customer
ID, rating value, and review text. You can store this data using either Cloud SQL or
Spanner. For most use cases Cloud SQL is the most appropriate system to store
ratings and reviews data. If your applications require higher transactional
throughput and horizontal scalability, Spanner is the right choice. For more
information on which database service to use, see Choosing a storage option.

Transactions and invoices

As with ratings and reviews, you can persist shopper transactions and invoices or
order details using different storage mechanisms. Transactions must be stored in
database systems that support ACID semantics, specifically the ability to
atomically commit writes. Datastore, Cloud SQL, and Spanner all support atomic
operations. For most use cases, relational systems are a good choice for
transactions, because the data is consistently structured from one write to the
next. The choice of storage system largely depends on your comfort with either
SQL or NoSQL systems, and the ability to customize applications to the chosen
database.

Invoices can also be stored using either NoSQL or relational databases; the
downstream use cases should drive which system you choose. In modern
commerce workloads, NoSQL document-oriented databases such as Datastore are
often used to persist invoices or order details, because the entire state of the
invoice can be stored as a single rich object. For more traditional commerce
workloads, Cloud SQL or Spanner may also be appropriate choices.

For more information on which database service to use for transactions and
invoices, see Choosing a storage option.

If your environment is entirely cloud based, your transaction and invoice data lives
entirely in the cloud infrastructure. On the other hand, if you work with a hybrid
environment, you need to synchronize data between the cloud environment and
your on-premises environment. In the hybrid scenario, the transaction and
invoice data usually resides in the on-premises infrastructure. In that case, you
can synchronize backend systems with the cloud data infrastructure using a
combination of custom applications, Pub/Sub, or database replication.

Clickstream data

Data about customer traffic is often captured through analytics packages such as
Google Analytics. However, you might want to gather this navigation data
(clickstream data) in real time.

There are many methods of capturing clickstream data; one way is to use
Serverless pixel tracking using Google Cloud. The datasets produced for
clickstream tracking tend to be very large and are often used as sources for
machine learning or predictive analytics. This type of data is usually stored in
NoSQL wide-column systems such as Bigtable. Big table supports large-scale

af://n54
https://cloud.google.com/sql
https://cloud.google.com/spanner
https://cloud.google.com/storage-options
af://n56
https://wikipedia.org/wiki/ACID
https://cloud.google.com/storage-options
https://cloud.google.com/pubsub
af://n61
https://cloud.google.com/solutions/serverless-pixel-tracking
https://cloud.google.com/bigtable

datasets (up to hundreds of petabytes), and provides low latency and high
throughput, which is helpful for this use case.

Product inventory

Data about whether a product is available is critically important to the overall
customer experience. Inventory data often consists of datasets containing product
SKUs, current inventory, and expected date of additional inventory. But given the
way this data is often used in applications, the storage mechanism must support
transactions and atomic operations to accurately reflect inventory levels.
Datastore, Cloud SQL, and Spanner all support atomic operations. For most use
cases, relational systems are a good choice for inventory data because the data is
consistently structured. For more information on which database service to use,
see Choosing a storage option.

As with transaction data, if your environment is entirely cloud-based, inventory
data lives in the cloud data infrastructure. If you work with a hybrid environment,
you need to synchronize data across the cloud environment and your on-premises
environment. In the hybrid scenario, inventory data usually resides in the on-
premises infrastructure. In that case, you can synchronize backend systems with
the cloud data infrastructure using a combination of custom applications,
Pub/Sub, or database replication.

Deployment architectures
When you use Google Cloud, you typically deploy microservices using either App
Engine flexible environment or Google Kubernetes Engine. App Engine flexible
environment is a fully-managed Platform as a Service (PaaS) that provides auto-
scaling, load balancing, and support for common languages and frameworks. GKE
is built on top of Kubernetes, an open source container-orchestration and cluster-
management mechanism. The choice of platform for your deployment depends on
the level of flexibility you need and how complex your application infrastructure
is.

Using GKE

The following diagram shows an example deployment with microservices using
GKE.

af://n64
https://cloud.google.com/storage-options
af://n67
https://cloud.google.com/appengine/docs/flexible
https://cloud.google.com/kubernetes-engine
https://kubernetes.io/
af://n69

GKE supports autoscaling Pods, depending on CPU usage, with the horizontal Pod
autoscaler. In addition, GKE clusters also support autoscaling using the GKE
cluster autoscaler, which automatically resizes clusters, based on saturated or
underutilized resources.

GKE clusters are regional resources, and for deployments that require high
availability, you should create deployments across multiple zones. For more
information, see Overview of multi-zonal GKE clusters.

For deployments that must serve a global customer base, deploy multiple GKE
clusters within a single project, one per region. Data storage for each microservice
is provisioned and operated out of the same project as the GKE clusters.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/multi-zone-clusters

	Architecture: Scalable e-commerce workloads using microservices
	Retail commerce requirements and microservices
	Backend architecture
	Frontend architecture
	Data storage
	Product catalog
	Product media
	Shopper profiles
	Ratings and reviews
	Transactions and invoices
	Clickstream data
	Product inventory

	Deployment architectures
	Using GKE

